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Grignard reagents rank among the most widely used and

studied class of organometallic compouhdAlthough numer-

ous aliphatic and aromatic Grignard reagents have been H3CCH3
prepared, there are very few examples of aromatic compounds

bearing two or more magnesium groups directly bonded to
aromatic carbon3. In the case of polymagnesiated compounds

made from hexahalobenzenes, the thermal stability of higher
magnesiated species is limited by the facile elimination of
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magnesium halide to afford benzynes. Polymagnesiated metal-

locenes are restricted to dimagnesiated ferrocéngecently,

rium content in the cyclopentadienyl ligand. Carbanercury

we reported the synthesis of pentamethylpentalithioruthenocenebondS in ruthenocenes are stable to water under the reaction

and decalithioruthenocerieHowever, subsequent work in our

conditions, which supports a pentamagnesiated formulation and

laboratory has revealed that complexes containing pentalithiated, ,jes out structures containing carbemercury bonds. Addi-

cyclopentadienyl ligands are too reactive and thermally unstable

to allow extensive use in syntheSisWe reasoned that replace-
ment of lithium by main group metals with less reactive carbon

tion of bromine gave pentabromopentamethylrutheno®ene
(57%). Additional evidence for a magnesiated species was
obtained from reaction with methyl iodide, which gave a mixture

metal bonds might lead to species with higher thermal stability o methylated ruthenocenes between pentamethylruthenocene

and more tractable (eag:tivity patterns. .Herein we report the a9 decamethylruthenocene (79% total yiéldBrignard re-
synthesis, characterization, and reactivity of permagnesmtedagents are well known to react with alkyl iodides by electron
ruthenocenes based upon the ruthenocene and pentamethylryz;nsrer pathway$.

thenocene skeletons. To the best of our knowledge, these are  Gjyen the likelihood that a pentamagnesiated ruthenocene was
the first examples of permagnesiated aromatic compounds. Theoeing formed, we sought to characterize this species by

new ruthenocenes are remarkably stable, yet readily react tospectroscopic methods. Treatmentofith methylmagnesium

form new substituted derivatives. NMR studies indicate that

chloride (12 equiv) in tetrahydrofurai-at ambient temperature,

the permagnesiated ruthenocenes exist as dimers and highefg)owed by 'H and3C{'H} NMR analysis, revealed 85% of a
oligomers and that conversion from lower to higher oligomers a0 produce with a tH NMR resonance for the Cp* ligand

is facile.

Treatment of pentakis(chloromercurio)(pentamethyl)ruthe-

nocené (1) with methylmagnesium chloride (12 equiv) in
tetrahydrofuran at 23C for 1 h led to its dissolution, giving a

at o 2.06 and 15% of at least five minor products with Cp*
resonances at 2.13, 2.12, 2.11, 2.10, and 2.88No cyclo-
pentadienyl G-H bonds were observed in thtH NMR
spectrum, indicating that the magnesiated ruthenocenes con-

clear yellow-orange solution containing a pentamagnesiated {5ined<2% of hydrogen on the cyclopentadienyl ligands. The

pentamethylruthenocene (Scheme 1). Hydrolysis of this solution 1

with H,O afforded pentamethylruthenocém85%), while O

3C{1H} NMR spectrum of2 showed resonances due to the
Cp* ligand at 84.40 C—CHjg), and 16.32 (G CHs) ppm.

quench gave pentamethylruthenocene (97%) with 87% deute-Regonances from the magnesiated cyclopentadienyl ligand were
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diphenylmagnesiutd® are found to resonate about-385 ppm Scheme 2

downfield from benzene. The positions of the magnesiated HgCl MgCl
carbon resonances (34:238.95 ppm downfield fron€—CHjz)

are thus appropriate for an aromatic magnesium compétind. CIHg HgCl 22 CHaMgCI CIMgMgCl
The minor compounds could not be identified due to their low ClHg HgCl THE, 23°C CIMg MgCl

MgCl

concentrations but are probably higher oligomers. ClHg (6 HgCl CiMg
MgCl

Ru
The isolation of2 was attempted. A tetrahydrofuran solution (b
. ClHg HgCl ClMg

prepared as above was treated with a large excess of hexane,
resulting in the precipitation of a yellowochre powder. HgCl MgCl
Analysis of the powder byH NMR spectroscopy in tetrahy- 3 4
drofurandg revealed at least 12 broad Cp* methyl resonances . .
betweend 2.13-1.81, of which2 (6 2.06) was a minor ChHal, 57% Bro, 41%

component? It was not possible to obtain #C{H} NMR

2

H,0, 75%

spectrum with sufficient signal to noise to allow structural Br H
assignments, due to the low concentration of each of the Q BrBr HH
components. However, we propose that the isolated material ®\[(CH3)nH5-n] Br Br H H
corresponds to a mixture of oligomét&that results from u B i r H Au H
elimination of magnesium chloride fror2. This mixture is (} B H H
further evidence of the tendency of pentamagnesiated ru- Br '

thenocenes to form oligomers. Infrared spectroscopy suggested ((CHg)oHs o] Br H

that tetrahydrofuran was associated with the isolated powder, .
but the exact amount could not be assigned by!He\MR aromatic molecules should bt_e e_xtre_mely unfavorable due to
spectrum because of residual hydrogen content in the tetrahy-"eépulsion between the carbanionic sites. Second, NMR spec-
drofuranes. The reactivity of the isolated powder was similar = roscopy suggests that the permagnesiated ruthenocenes exist
to that of the compound generated in solution. Hydrolysis Preferentially as dimers or higher oligomers. The facile
afforded pentamethylruthenocene (65%), while bromination with formation of oligomers is in contrast to traditional Grignard
bromine gave pentabromopentamethylruthenocene (54%) and'€agents, whlch favor_monomerlc formulations in (_ather sol-
tetrabromopentamethylruthenocéif&3%). vents!®17 Finally, despite the unusual placement of five or ten
The simple synthesis &and its higher oligomers suggested contiguous magnesium substituents about a metallocene skel-
that a decamagnesiated ruthenocene should be accessibléton, initial studies suggest that the permagnesiated ruthenocenes
Accordingly, treatment of decakis(chloromercurio)ruthenocene féact like typical organomagnesium reagents. Thus, the com-
(3)° with methylmagnesium chloride (ca. 22 equiv) in tetrahy- p!ete range of reactivity associated with Grignard reagents and
drofuran at 23C gave a turbid light brown solution containing diorganomagnesium compounds may be expected for permag-
a decamagnesiated ruthenoceh¢Scheme 2). Attempts to nesiated cyclopentadienyl complexes and aromatic compdunds.
record NMR spectra of in tetrahydrofurards failed due to its The above predictions are being investigated in our laboragory.
low solubility. Although4 is denoted as a monomer herein for ) ] o
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ruthenocenes (57% total yield), as determined by GLC and GLC/ gpeciroscopic and analytical data for the new compounds (16 pages).
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